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Abstract

Approximately 11% of human genes are transcribed by a
bidirectional promoter (BDP), defined as two genes with <1 kb
between their transcription start sites. Despite their evolu-
tionary conservation and enrichment for housekeeping genes
and oncogenes, the regulatory role of BDPs remains unclear.
BDPs have been suggested to facilitate gene coregulation and/
or decrease expression noise. This review discusses these
potential regulatory functions through the context of six pro-
spective underlying mechanistic models: a single nucleosome
free region, shared transcription factor/regulator binding,
cooperative negative supercoiling, bimodal histone marks, joint
activation by enhancer(s), and RNA-mediated recruitment of
regulators. These molecular mechanisms may act indepen-
dently and/or cooperatively to facilitate the coregulation and/or
decreased expression noise predicted of BDPs.
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Introduction

Precise gene regulation is essential for proper develop-
ment, maintenance of homeostasis, and response to
extracellular stimuli. Mammalian gene regulation begins
with transcription, which initiates at a gene’s promoter.
For this review, a gene’s promoter is defined as the region
upstream and encompassing a gene’s transcription start
site, where regulatory proteins and transcriptional
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machinery bind to direct transcription initiation. Pro-
ductive transcription requires (1) promoter activation,
wherein a promoter enters a transcriptionally permissive
chromatin state, followed by (2) transcription initiation,
(3) elongation, and (4) termination, resulting in a full-
length mature transcript [1—3]. First, transcription fac-
tors ('TFs) and cofactors bind their cognate sites at en-
hancers and/or promoters, and recruit the transcriptional
machinery, consisting of RNA polymerase II (Pol IT) and
general transcription factors (GTFs). Pol 11 and GTFs
then form the pre-initiation complex (PIC) at the gene’s
transcription start site ('T'SS). Following initiation, Pol 11
begins transcription elongation through the gene body
followed by termination and polyadenylation. Mamma-
lian transcription as well as additional regulatory steps not
discussed in this review including promoter-proximal
pausing, 5’ capping, and splicing have been reviewed in
further detail by Roeder [3], Core and Adelman [4],
Ramanathan et al. [5] and Wilkinson et al. [6].

Transcriptional initiation at promoters is often described
as unidirectional, wherein unidirectional promoters
transcribe a single gene in a single direction (Figure 1a).
However, studies using nascent transcript sequencing
estimate that 48.9% [7] to >75% [8,9] of human pro-
moters are divergently transcribed. These estimates vary
based on sequencing and analysis methods, as discussed
in Duttke et al. (2015) [10]. Divergent promoters tran-
scribe a single gene in the sense direction as well as a
short, rapidly degraded upstream RNA (sometimes
referred to as uaRNAs, CUTS, PROMPTS, etc.) in the
antisense direction (Figure 1b) [7—9,11—16]. Tran-
scription at divergent promoters initiates from separate
core promoters and PICs [8,9,11,12,17,18]. However,
distinct from both unidirectional and divergent pro-
moters are bidirectional promoters. A bidirectional pro-
moter (BDP) is defined as two divergently transcribed
genes with less than 1000 base pairs between their
transcription start sites (Figure 1c¢) [19,20]. Like diver-
gent promoters, transcription at bidirectional promoters
initiates from separate core promoters and PICs
[8,9,11,12,17,18,21]. However, in contrast to divergent
promoters, BDPs specifically transcribe two full-length,
stable transcripts. These transcripts include protein-
coding genes and (non)functional non-coding tran-
scripts, such as IncRNAs and miRNAs [19,20]. For this
review, BDP gene pairs are referred to as Forward (Watson)
Gene/Reverse (Crick) gene.
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Figure 1
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Types of mammalian promoters. a. A unidirectional promoter transcribes a single gene in the sense direction. b. A divergent promoter primarily
transcribes a single gene in the sense direction, but also divergently initiates antisense transcription. Sense and antisense transcripts at divergent
promoters are initiated from separate core promoters; however, productive RNA elongation resulting in mature RNAs only occurs in the sense direction.
Antisense transcripts terminate early (<350bp) and are rapidly degraded. c. A bidirectional promoter divergently transcribes two genes with <1000bp
between their TSSs. The sense and antisense genes are initiated from separate core promoters. The distinguishing factor between divergent and
bidirectional promoters is that BDPs transcribe two full-length genes; these genes can include protein-coding transcripts as well as stable, non-coding

transcripts.

Approximately 11% of human genes are transcribed by a
bidirectional promoter [19,20,22,23]. These genes are
enriched for important functionalities: 35% of house-
keeping genes [19], 33.3% of DNA repair genes [20],
and 23% of oncogenes [19,24] are under a BDP.
Furthermore, the bidirectional promoter architecture
tends to be conserved at these genes, suggesting BDPs
serve an important regulatory function [20,25]. How-
ever, the regulatory function(s) of BDPs are currently
poorly understood, largely due to limited study of BDPs.
Despite our limited knowledge, prior studies of bidi-
rectional and divergent promoters have suggested mul-
tiple potential regulatory function(s), including

coregulation and lower noise, and mechanistic models
for BDPs.

Models of BDP regulatory function
Coregulation of BDP genes

BDPs have been hypothesized to coregulate their two
genes. For this review, coregulation is defined as two
genes covarying (increasing or decreasing concordantly)
over time within a single cell as well as between cells in a
genetically identical population [26]. Gene coregulation
is important for maintaining the stoichiometry of pro-
teins that form complexes or function together in
pathways. Coregulation can be achieved through several
mechanisms, including transcriptional coregulation via
shared  transcription  factors [27—29],  post-
transcriptional coregulation via miRNAs [30], and
post-translational coregulation via coordinated protein
degradation [31]. In this review we focus on BDP-
mediated coregulation.

Given our understanding of promoters and transcriptional
regulation, it is possible that bidirectional promoters may
broadly exhibit coregulation at the transcriptional level;
this coregulation may be attenuated at the RNA and/or
protein levels, as observed in Kustatscher et al. (2017).
This aligns with studies showing that genes sharing a

BDP are typically not functionally related [19,20,22,32]
and that while many BDP genes are evolutionarily
conserved under the bidirectional promoter architecture,
their gene partner is generally not [20]. Additionally, 11%
of BDP gene pairs exhibit anticorrelated expression [32].
In total, the evidence suggests that coregulation may not
be a universal function of BDPs [20]; however, coregu-
lation may still be a key function for some BDP gene
pairs, such as the HTBZ2/HTAZ bidirectional promoter in
yeast, which requires precise protein stoichiometry for
histone functionality [33—35].

Transcriptional noise

In addition to coregulation, BDPs have also been hy-
pothesized to decrease transcriptional noise [25]. For
this review, transcriptional noise is defined as the vari-
ation in a single gene’s RNA levels between cells in a
genetically identical population (variance/mean?) [36].
Transcriptional noise generally propagates, resulting in
expression noise at the protein level [36—38]. Expres-
sion noise is an important regulatory feature. In yeast,
certain gene functionalities generally exhibit higher
(e.g. stress response genes) or lower (e.g. housekeeping)
expression noise [22,25,34,39—42]. Given their enrich-
ment for low-noise genes [19,20,25], it is plausible that
bidirectional promoters may decrease expression noise.
Indeed, by analyzing single-cell protein abundance in
yeast, Wang et al. (2011) found that BDP genes
exhibited significantly lower expression noise than non-
BDP genes [25]. This finding held true when consid-
ering all genes as well as only non-essential genes [25].

A major source of expression noise is stochastic, “bursty”
transcription due to promoters alternating between
active (ON) and inactive (OFF) states [1,37,43—45].
During each burst (ON state), multiple RNAs may be
transcribed. As such, some cells may have many RNAs
while others have none, resulting in variation (noise) in
both RNA and protein levels. Transcriptional bursting is
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likely universal for all eukaryotes [46] and has been
observed in yeast [47], drosophila [48], mice [49], and
humans [50].

The biophysical and regulatory properties of BDPs may
modulate transcriptional noise through transcriptional
bursting. To illustrate this, consider a 2-state promoter
model, where the promoter alternates between an ON
and OFF state [37,51,52] as shown below:

kp

ern édcﬁ
Porr 2 PoN—RNA—@
e

This model has four rate parameters: forward rate (4¢ for
Porr— Pon), reverse rate (4, for Pon— Porr), the rate
of transcription during the ON state (#.), and the rate
of RNA degradation (4eg). Here we hold the tran-
scription (4xn) and degradation (£4cg) rates constant and
consider only changes in promoter transition rates (£,
#;). An increase in only the forward (4f) rate results in a
decreased OFF state duration (time between bursts),
increased transcriptional output, and decreased tran-
scriptional noise. A decrease in only the reverse rate (4;)
results in an increased ON state duration, increased
transcriptional output, and decreased transcriptional
noise. In the limit of an extremely long ON state
duration and/or extremely short OFF state duration, the
promoter approaches the low-noise Poisson limit of
constitutive expression [53]. Thus, BDPs could reduce
noise in at least two ways: (1) increasing the ON-
duration without affecting other parameters; (2)
decreasing the OFF-duration without affecting other
parameters. Both result in reduced noise and increased
average transcriptional output. This aligns with the
observed lower expression noise [25] and high expres-
sion levels of BDP genes [7,14,19,54].

Mechanistic models of BDP regulation

Here we discuss potential mechanistic models for bidi-
rectional promoter regulation that may contribute to the
transcriptional coregulation and/or decreased expression
noise predicted of BDPs. These models include: a single
shared nucleosome free region (Figure 2a), shared regu-
lator binding (Figure 2b), cooperative negative super-
coiling (Figure 2c¢), bimodal histone modifications
(Figure 2d), coregulation by enhancers (Figure 2¢), and
RNA-mediated regulation (Figure 2f). These non-
exclusive models may contribute individually or combi-
natorially to the regulation of transcription at divergent
and/or bidirectional promoters.

Nucleosome free region

Transcriptionally active regions of the genome are
associated with a nucleosome free region (NFR). Pro-
moters are typically associated with an NFR of approx-
imately 100—300 bp length, flanked by a strongly
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positioned +1 nucleosome and a weaker positioned —1
nucleosome [55]. The NFR exposes the naked DNA
sequence, facilitating TF and regulator binding as well
as PIC formation [8,17,56—59]. In unidirectional pro-
moters, the PIC forms directly upstream of the +1
nucleosome. At divergent and bidirectional promoters,
divergent transcripts initiate from two separate PICs at
the strongly positioned +1 and —1 nucleosomes, sepa-
rated by a single shared NFR (Figure 2a)
[8,9,11,12,17,18,21]. Nucleosome free regions at diver-
gent and bidirectional promoters are typically 100-
300bp in length, but may span upwards of 1000bp [8].
This aligns with the T'SS distances of bidirectional
promoters, which are enriched for short T'SS distances
(between ~100 and 300bp [8,13,19,32]) but by defi-
nition can have a TSS distance of up to 1000bp [32].

Bidirectional promoter genes sharing a single NFR could
contribute to coregulation. Nucleosome repositioning
and eviction could create a transcriptionally permissive
state for both genes, resulting in coordinated tran-
scription activation. Downstream regulator binding, PIC
formation, and histone modifications could then
modulate each gene’s transcription initiation, resulting
in BDPs with varying levels of coregulation.

Divergent transcription could also reinforce the NFR,
resulting in more consistent expression and decreased
noise. Studies have suggested that transcription along
with the recruitment of chromatin remodelers may
contribute to maintaining a transcriptionally permissive
NFR through regulating nucleosome composition,
positioning, and turnover [56,57,60—63] (Figure 2a).
Divergent transcription at divergent and bidirectional
promoters could dually reinforce this feedback loop
[13,34], such that the transcription in the sense or
antisense direction can help promote the formation and
maintenance of the shared NFR, collectively increasing
the promoter’s ON duration and decreasing transcrip-
tional noise.

Shared regulator binding

A gene’s promoter is characterized by the binding of
regulatory proteins (such as TFs, GTFs, and Mediator)
and RNA Pol II and its cofactors. While divergent and
bidirectional promoters have separate core promoters
and PICs, the binding of regulatory proteins may be
shared. Given evidence that separate genes regulated by
the same TF are coregulated [27—30], it is possible that
BDP genes sharing a 'TF binding site will exhibit some
degree of coregulation. This effect would be protein-
dependent, as some regulators enforce promoter direc-
tionality [7,17,62,64,65].

Supporting this hypothesis, Core et al. (2014) found
that at divergent and bidirectional promoters, the ma-
jority (73/84) of TFs bind centrally between the T'SSs,
suggesting these TFs may regulate both BDP genes
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Figure 2

a. Nucleosome Free Region

Gene B Gene A
-2 -1 +1 +2

PIC GTFs

D

Nucleosome Free Region

RNA Pol Il

GTFs fi
Pol Il # :

b. Shared Regulators
TFs bind centrally within BDPs

Binding Profiles

C. Supercoiling

Negative supercoiling facilitates
nucleosome eviction & turnover
and regulator, Pol Il, & TF binding

@ 0

(-) supercoils \,

~
Transcription
—

(+) supercoils

up to 1000bp at BDPs

Trs A

NFR promotes regulator, Pol Il
& TF binding

e 2 ;Fs
Wi ", I
Bidirectional transcription helps
form & maintain the shared NFR

D

d. Histone Marks
BDPs exhibit bimodal histone marks

Shared TFs recruit regulators that
facilitate P1C formation at both TSS

&

€. Enhancers
Enhancers interact with and
activate their cognate promoter(s)

Bidirectional transcription produces
additive negative supercoiling at the
shared promoter region

\\W%‘J/\/C\x,m

Negative supercoiling facilitates
promoter activation & transcription

f. RNA Regulation
RNAs can regulate BDP activation
and/or transcription

Nascent RNAs provide cis
regulation

Transcription deposits active marks
Active histone marks spread

0l g~ 1010

distal activation
/.o 4

BDP transcription dually reinforces
an active promoter state

H3K4me3 Active No enhancer
H3K27ac Promoter interaction
. N
H3K79me2 Transcription
H3K36me3 Elongation

C & =
inactive promoter active promoter \/prc; de trans regulation

BDP genes are co-activated by
shared enhancers

chromatin v ’
remodelers, }) S
.......... TFs & regulators

Y

interactions with | i
“&_/pr'oxima/ activation | enhancers \4

Mature RNAs

RNA recruits 9

| 1) RNA facilitates | :'UO. \\

Current Opinion in Structural Biology

Mechanistic models for bidirectional promoter regulation. a. Bidirectional promoters are marked by a single, shared NFR spanning the distance
between the two genes’ TSSs. This NFR facilitates protein binding, PIC formation, and transcription, which in turn may maintain the NFR. b. Many
transcription factors bind to their binding site (BS) centrally within BDPs, suggesting they may regulate both BDP genes. This is seen at the GAL80/SUT-
719 BDP in yeast, where Gal4 facilitates PIC formation at both TSS. ¢. Divergent transcription at BDPs produces additive negative supercoiling, which
may facilitate an active promoter state through promoter melting, nucleosome modulation, and protein binding. d. BDPs exhibit bimodal distributions for
active promoter (H3K4me3, H3K27ac), transcription (H3K79me2), and elongation (H3K36me3) histone marks. Transcriptionally linked deposition and
spread of these histone marks may reinforce an active promoter state. e. BDPs may be coregulated by distal and proximal regulatory elements including
enhancers, as observed at the NIPBL/NIPBL-AS1 BDP in humans, where the expression of both genes decreases upon the deletion of a distal enhancer.
f. Nascent and mature transcripts produced by BDPs may regulate the promoter through the recruitment of regulatory proteins and/or facilitating in-

teractions with distal regulatory elements.

(Figure 2b). In contrast, GTFs bind proximally to the
forward and reverse T'SS [11,66], aligning with each
TSS having its own PIC. These results agree with
CryoEM studies showing that the Gal4-VP16 activator
binds centrally at the GALS0/SUT719 BDP in yeast [21].
The Gal4-VP16 dimer recruits a Mediator-PIC dimer to
the BDP, which is then delivered to each gene’s core
promoter via DNA bending and GTFs [21].

Coregulation of BDPs by a shared TF in mammals has
also been observed. Expression of the SERPINII/
PDCD10 BDP gene pair is coregulated by c-MYC [67].

The PRRI11/SKAZ and MRPS12/SARSZ BDP gene pairs
are both characterized by shared NF—Y binding sites
[68—70]. However, both gene pairs have multiple
NF—Y binding sites which exhibit different regulato-
ry effects.

In addition to the direct effects of TF binding, diver-
gent transcription may result in a reservoir of tran-
scriptional machinery [7,12,34]: the unbinding of
regulators and disassembly of PIC components at the
+1 and —1 transcription start sites could result in a high
local concentration of 'TFs and transcriptional
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machinery, allowing for rapid reinitiation of transcription
at divergent and bidirectional promoters [34,71]. This
may decrease gene expression noise caused by stochastic
turnover of TE GTE and Pol II [58,72]. This also aligns
with observed higher TF binding and overall expression
levels at BDPs compared to divergent or unidirectional
promoters [7,11,14,54,66].

Supercoiling

As RNA Pol II transcribes, it produces positive DNA
supercoils ahead of itself and negative DNA supercoils in
its wake (Figure 2c) [73]. Divergent transcription at
bidirectional promoters produces additive negative
supercoiling at the shared promoter region
[13,47,74—76]. Negative supercoiling has been proposed
to facilitate nucleosome eviction/turnover, promoter
melting, TF and Pol II binding, and PIC formation
(Figure 2c¢) [73,74,77—81]; thus, cooperative negative
supercoiling at the promoter region could promote tran-
scriptional activation. Indeed, models of supercoiling at
divergently oriented promoters predict that cooperative
negative supercoiling could result in gene coregulation, as
observed at the /4er7 and /er! locus in zebrafish
[75,82,83]. This model predicts that this supercoiling
may increase transcription factor and RNA Pol II binding,
increase promoter ON duration, and decrease OFF
duration, potentially decreasing transcriptional noise
[75]. Additive negative supercoiling is likely more pro-
nounced at BDPs, which transcribe full length genes,
than at divergent promoters, as negative supercoiling
produced during transcription increases with transcript
length. The interplay between supercoiling, nucleosome
occupancy, and TF binding could further amplify the
positive regulatory impact of supercoiling at BDPs,
creating a cooperative system for maintaining transcrip-
tional activity.

However, the accumulation of excessive negative
supercoiling at the promoter region has also been shown
to inhibit BDP transcription and coregulation, as
observed at the GAL1/GAL 10 bidirectional promoter in
yeast [47]. This suggests that bidirectional promoters
may require a certain level of supercoiling to achieve
efficient transcription and/or coregulation.

Histone marks

Active and inactive promoter states are associated with
distinct histone post-translational modifications (his-
tone marks) [84]. While certain histone marks correlate
with active transcription, it remains unclear whether
these marks occur upstream or downstream of tran-
scription [84]. Specifically, it has been proposed that (1)
histone marks may direct transcription initiation and
elongation, as these processes are distinguished by
distinct histone marks [55,84,85]; and/or (2) histone
marks are deposited via transcription, as evidenced by
histone readers/writers interacting directly with RNA
Pol 11 [84—86].

Models of bidirectional promoter regulation Nemsick and Hansen
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Multiple studies have shown that BDPs exhibit distinct
histone profiles. At active promoters, transcription initi-
ation is associated with H3K4me3 and H3K27ac while

transcription and elongation are

associated with

H3K79me2 and H3K36me3 [84]. These marks are
differentially enriched at unidirectional, divergent, and
bidirectional promoters. Unidirectional promoters only

H3K4me3, H3K27ac, H3K79me2,

contain

and

H3K36me3 in the sense direction [7,9,11,12,16]. Diver-

gent promoters exhibit bimodal enrichment

for

H3K4me3 and H3KZ27ac but only contain elongation
marks in the sense direction [7,9,11,12,16]. Bidirectional
promoters exhibit bimodal enrichment for H3K4me3,
H3K27ac, H3K79me2, and H3K36me3 (Figure 2d)
[7,9,11,12,16,87,88], aligning with BDPs transcribing two
full-length genes in both directions. Whether this
bimodality is due to co-deposition and/or spread of his-
tone marks between the two genes or if it is merely a
consequence of divergent transcription is currently un-
known. Regardless, bimodal active histone marks suggest
some degree of co-activation within BDP gene pairs.
Furthermore, BDPs exhibit strong and wider H3K4me3
and H3K27ac signals [14]. This suggests a strong acti-
vation state, possibly resulting in longer ON states and
decreased noise. However, as our knowledge of histone
mark functionality is limited [84], the causality and ef-
fects of BDP histone mark profiles is difficult to dissect.

Enhancers

Enhancers are a key regulator of gene expression [89].
Upon interacting with their cognate promoter(s), en-
hancers deposit chromatin remodelers, TFs, and/or
transcriptional machinery, facilitating promoter activa-
tion and transcription initiation (Figure Ze) [90,91].
Studies have suggested that a single enhancer can
regulate multiple promoters [48,92—94]. Therefore, it
is possible that a single enhancer could coregulate two
genes sharing a BDP. Indeed, at the NIPBI./NIPBI.-AS1
BDP in human cells, deletion of a 130 kb distal enhancer
resulted in a concordant ~40% decrease in the tran-
scription of both genes [95]. Similar results were
observed at the DEIN/HANDZ2 and NBR2/BRCAI BDPs,

where multiple proximal enhancers/silencers

were

found that regulate both genes [96—98]. These shared
enhancer interactions and resultant activation likely
contribute to the observed coexpression of these BDPs.

However, it is possible that enhancer coregulation of

BDPs is not universal and may be context (BDP,

enhancer, cell-type) specific.

RNA regulation

There is increasing evidence that nascent and mature
transcripts may perform local regulatory functions,
including the recruitment of TFs and chromatin modi-
fiers via RNA-binding domains [99—101], and distal
regulatory functions, including facilitating interactions
with distal enhancers (Figure 2f) [102,103]. Thus, at
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some BDPs, particularly those containing protein-
coding/IncRNA gene pairs, the transcription of Gene A
may recruit regulatory factors to further direct and tune
the transcription of Gene B. Indeed, RNA regulation of
BDPs was observed at the BISPR/BST2 BDP gene pair.
siRNA knockdown of the BISPR IncRNA resulted in
decreased BS72 expression, while transgenic over-
expression of BISPR resulted in increased BS72
expression, suggesting the BISPR gene product enacts
trans regulation on BSTZ [104].

RNA-mediated regulation could also tune coregulation
and/or transcriptional noise at BDPs. Positive regulation,
where Gene A's RNA recruits regulators that facilitate
the activation of Gene B, could result in coregulation as
well as decreased expression noise by decreasing Gene
B’s OFF duration via facilitating its activation and/or
increasing Gene B’s ON duration via maintaining its
active promoter state. Negative regulation, where Gene
A's RNA recruits regulators that repress Gene B, could
result in negative coregulation and anticorrelation be-
tween Gene A and B. However, RNA regulation is less
likely to occur at divergent promoters, as antisense
RNAs are short and unstable, which may limit their
ability to perform regulatory functions.

A combinatorial model for BDP regulation

In total, these six cooperative, non-independent molec-
ular mechanisms are consistent with a BDP regulation
model in which: (1) BDP Gene A is activated which then
facilitates the activation of BDP gene B; and/or (2) both
BDP genes are simultaneously activated. Both scenarios
result in gene coregulation, while scenario (1) also results
in decreased noise due to decreased OFF duration.
Divergent transcription then maintains a joint transcrip-
tionally active state at the BDP, increasing ON duration
and decreasing expression noise. This regulatory model
may not be universal, particularly at BDPs which exhibit
antagonistic expression; however, these molecular
mechanisms are still broadly compatible with positive,
negative, and independent BDP RNA regulation.

Antagonism in BDPs

While prior studies generally observe BDP coregulation
[19,20,25,32,39], some studies have observed antago-
nistic expression at BDPs. Trinklein et al. (2004) found
that 11% of BDPs exhibit negative expression correla-
tion between their two genes, while 10% transcribe in
only one direction [32]; additionally, at 9/10 BDPs, the
deletion of Gene A’s 'T'SS resulted in increased expres-
sion of Gene B [32]. Similarly, Zuin et al. (2017) found
that dCas9 transcriptional blocking of Gene A increased
the transcription of Gene B and vice versa for the
NIPBL/NIPBIL.-AS1 BDP [95]. However, NIPBL and
NIPBI.-AS1 exhibit coregulation by their shared
enhancer. This suggests nuanced regulation at this BDP.
Understanding mechanistically how different BDPs

exhibit cooperative, antagonistic, or independent regu-
lation is an important direction for future studies.

Technical considerations of studying BDPs
Elucidating the regulatory role of BDPs and exploring the
contributions of these mechanistic models has been
difficult, partly due to technical limitations. Measuring
covariance is complicated, as different techniques (fluo-
rescent/luminescent reporter assay
[25,32,35,69,87,96,98,105,106], microarray [20,32,107],
gPCR [88,95,102,104], bulk and single-cell RNA-seq-
based methods [8,14,15,19,22,62,86,88,108,109], RINA-
FISH [35,65], etc.) measure different types of covari-
ance (transcription, RNA, protein) [30,110—112] in
different contexts (monoclonal population, different
lines of the same cancer, different tissue types, etc.).
Multiple studies have suggested that BDPs exhibit some
degree of coregulation, more than predicted solely by
sharing a genomic context [19,20,25,32,39]; however,
other studies argue that BDP coregulation is not uni-
versal and may not be functional. Yang et al. (2007) found
that BDP expression correlation decreases as more tissue
types are considered [107]. Kustatscher et al. (2017)
observe mRNA covariance at 31/167 (19%) BDPs in
lymphoblastoid cell lines, but of these BDPs only 3/31
also covary at the protein level [22]. Other studies have
observed independent or anticorrelated expression at
some BDPs [32,95]. As such, it remains unclear whether
BDPs are generally coregulated or if this coregulation is
functional. Further studies of bidirectional promoters
with improved techniques will allow us to better under-
stand the generality, mechanisms, and function of
BDP coregulation.

Specifically, current high-throughput techniques are
poorly equipped to measure transcriptional coregula-
tion, transcriptional bursting, and transcriptional noise.
Recently developed single cell GRO-seq and equivalent
techniques are promising, as they allow for single-cell
measurement of coregulation via Pol II localization on
nascent RNA [27]. From these measurements, tran-
scriptional bursting can be extrapolated more accurately
than other RNA-seq based techniques. However,
scGRO-seq suffers from technical noise and requires
optimization to achieve sufficient measurement effi-
ciency [27,113]. Static RNA imaging approaches, such
as single-molecule RNA-FISH [35], provide a snapshot
of nascent transcript levels across a cell population and
can measure noise. Live-cell nascent RNA imaging
[47,48,50] can directly measure nascent transcription
over time and can thus measure transcriptional coregu-
lation, bursting dynamics, and transcriptional noise.
However, these imaging approaches tend to be low-
throughput and experimentally intensive. A combina-
tion of imaging techniques with improved single-cell
nascent RNA sequencing methods may provide a
clearer picture regarding BDP coregulation.
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Conclusion

Despite their evolutionary conservation and regulatory
importance, BDPs remain poorly understood. Prior
studies have provided preliminary insights into their
regulatory functions and mechanisms. However, further
studies of individual and broad BDP dynamics through
the scope of the molecular models outlined in this
review using techniques that can directly measure
nascent transcription will allow us to elucidate the reg-
ulatory role of BDPs and improve our understanding of
transcriptional regulation.
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